If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+23x-352=0
a = 7; b = 23; c = -352;
Δ = b2-4ac
Δ = 232-4·7·(-352)
Δ = 10385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{10385}}{2*7}=\frac{-23-\sqrt{10385}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{10385}}{2*7}=\frac{-23+\sqrt{10385}}{14} $
| -3.9+k=1.2 | | 4z/7+5=6 | | x-0.029x=1200 | | -35=-u/7 | | x-0.29x=1200 | | 1.8-7.4=k | | 12=w/4-14 | | 98=8x+3 | | 2a−a=19 | | x/3+13=37 | | 3.8-(-1-9.7)=2.6+13.3x | | 9-4(5x+6)=0 | | n+9÷4=1.5 | | -3.0-k=1.0 | | 3(x-3)=5(x+7) | | k+-8.8=-4.9 | | 2.5x+3.6=8.6 | | 158=42-u | | 5t+15=25t-5 | | (4m-5)^2-20=0 | | y+11=41 | | 7x-18=5x-6.x= | | 7x+3=x-18 | | -70-5x=-20 | | 3x-53=54 | | 0.5x(-0.5)=0.75x+1-x | | 3x^-10x-8=0 | | 15j-8j=14 | | -12(9x-8)+9(12x-13)=-33 | | 6x-12=3x+10 | | 2(-3)-7y=11 | | 66=11(1+8m)+11(m-4) |